

Advances and recent trends in Modeling and Analysis of Bridges

Naveed Anwar

- 1. Over view of Bridge Design Process and Bridge Types
- 2. Advances and recent trends in Modeling and Analysis of Bridges
- 3. Design of Bridge Super Structure and Sub Structure
- 4. International Bridge Design Standards and Approaches

The Structural Analysis Problem

The Structural System

Analysis of Continuums

Equilibrium Equation: The Sum of Body Forces and Surface Tractions is equal to Zero

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + p_{vx} = 0$$

Real Structure is governed by "Partial Differential Equations" of various order

Direct solution is only possible for:

- Simple Geometry
- Simple Boundary
- Simple Loading

AIT Solutions

Simplified Structural System

6

The Total Structural System

Eight types of equilibrium equations are possible!

Integrated Analysis Solution

Specialized for every required analysis case

Linear and Nonlinear

• Linear, Static and Dynamic

$$Ku = F$$

 $M\ddot{u}(t) + C\dot{u}(t) + Ku(t) = F(t)$

• Nonlinear, Static and Dynamic

$$Ku + F_{NL} = F$$

$$M\ddot{u}(t) + C\dot{u}(t) + Ku(t) + F(t)_{NL} = F(t)$$

9

The Need For Analysis

• We need to determine the response of the structure to excitations Analysis so that • We can ensure that the structure can Design sustain the excitation with an acceptable level of response

Finite Element Method and FEA

• Finite Element Analysis (FEA)

"A discretized solution to a continuum problem using FEM"

• Finite Element Method (FEM)

"A numerical procedure for solving (partial) differential equations associated with field problems, with an accuracy acceptable to engineers"

A quick overview of FEM and FEA

The Need for Modeling

- A Real Structure cannot be Analyzed: It can only be "Load Tested" to determine response
- B We can only analyze a "Model" of a Structure
- C We therefore need tools to <u>Model the</u> <u>Structure</u> and to <u>Analyze the Model</u>

We are analyzing a *model* of the structure, not the structure itself

Basic Modeling Principles

Dr. Naveed Anwar

Solid – Structure Model

3D-CONTINUUM MODEL

(Governed by partial differential equations)

CONTINUOUS MODEL OF STRUCTURE

(Governed by either

partial or total differential equations)

DISCRETE MODEL OF STRUCTURE

(Governed by algebraic

equations)

Model what you will build

Or

Build what you modeled

Global Modeling of Structural Geometry

Various Ways to Model a Real Structure

23

Basic Categories of Finite Elements

- 0 D Elements (Joints)
- 1D Elements (Beam type)
 - Only one dimension modeled as a line, the other two dimensions are properties
 - Can be used in 1D, 2D and 2D
- 2D Elements (Plate type)
 - Only two dimensions are actually modeled as a surface, the third dimension is represented by stiffness properties
 - Can be used in 2D and 3D Model
- 3D Elements (Brick type)
 - All three dimensions are modeled as a solid
 - Can be used in 3D Model

24

Some Finite Elements

FEA Overall Process

• Prepare the FE Model

- Discretize (mesh) the structure
- Prescribe loads
- Prescribe supports
- Perform calculations (solve)
 - Generate stiffness matric (k) for each element
 - Connect elements (assemble K)
 - Assemble loads (into load vector R)
 - Impose supports conditions
 - Solve equations (KD = R) for displacements
- Post-process

The Finite Element Analysis Process

FEA and FEM are the tools to get the answers,

but they do not provide the answers by themselves

Structural Modeling

29

Basic Modeling Techniques

- Techniques to model Geometry
 - Direct physical representation of bridge components and parts by appropriate elements
 - Example: Frame Element, Shell Element
- Techniques to model Behavior
 - In-direct ways to model parts, components or behavior, otherwise too difficult or undesirable to model by geometry
 - Example: Restraint, Spring

Developments in FE Modeling

- Level-1
 - Mostly developed and in use before the 1980s
 - The Nodes are defined first by coordinates and then Elements are defined that connect the nodes
- Level-2
 - Starting somewhere in the 1980s and 1990s
 - The Elements are defined directly, either numerically or graphically and the Nodes are created automatically
- Level-3
 - Current development stage
 - The structure is represented by generic Objects and the elements and Nodes are created automatically

Current Modeling Trend : Level-3

- In several software, the Graphic Objects representing the Structural Members are automatically divided into Finite Elements for analysis
- This involves
 - Object-based Modeling
 - Auto Meshing
 - Auto Load Computation
 - Auto Load Transfer
 - Converting FE results to Object results

Specific Issues in Bridge Modeling and Analysis

Developments

- There were several specialized software for bridge modeling and analysis but they were typically developed and used by bridge designers and related departments
- These days, the developments in the core finite element solutions have almost been standardized and the focus has turned to development of software that works more closely and directly in the problem domain often hiding the underline solutions.
- These programs handle varying levels of the bridge design problem such as: modeling and analysis, integrated design, component design, substructure design, and some handles integrated geometric and structural design

Modeling Issues	Comments
	Traditionally this problem has been handled by influence lines and influence surfaces. In computer aided analysis, this may be handled by automatic generation of multiple load cases representing moving loads.
The problem of the moving loads	Many programs generate vehicles, traffic lanes following the road alignment; compute the corresponding post processing of results. Some programs also generate animated display of deformations and stresses.

Modeling Issues	Comments
The joints that must allow movement while transferring loads and forces	 In bridges, the joints are often required to transfer heavy loads, while allowing movement. This presents special modeling issues for selecting appropriate connection elements and introduces non-linearity. Even a simple elastomeric bearing is difficult to model properly if right tools are not available.
The interaction between the post tensioning design and the basic behavior	Generally post tensioning is designed to counter the actions obtained from analysis. However, as many bridges are indeterminate structures, the secondary effects of pos-tensioning affect the basic response, hence complicating the analysis and design cycle.
Modeling Issues	Comments
---	--
The large proportion and scale of the structure and its components	 In bridges often members are of massive proportions requiring more refined models using shell or solid elements. Also the assumptions of linear strain distribution may not hold true in many cases, especially at junctions and joints. Often several types of models may be needed to complete the analysis of some parts.
The inter dependency of construction methods, construction sequence, modeling and design	The construction sequence and construction methodology greatly affect the modeling as well as analysis, especially for segmental construction, cantilever construction, incremental launching and construction of cable stayed bridges. Not many software are equipped to handle the aspects

Modeling Issues	Comments
Large number of different load cases and combinations	Large number of load types and cases arising from environmental factors, construction sequence, vehicle movements, time dependent effects, post-tensioning etc. This also leads to a very large number of load combinations to be considered in member design.
Extensive nonlinearity inherently present in the structure itself	Several of the major bridge systems, such as cable stayed, suspension, tied arch, cantilever, stressed ribbon etc. possess high degree of non linearity due to the presence of cables, coupled effect of creep, differential movements, relaxation etc.
Complexities due to wind induced forces and motion	Many long span bridges with flexible decks are susceptible to flutter, vortex shedding and even hyper elasticity with significant interaction between structure and wind. Not many software are capable to handle wind analysis properly, and often wind tunnel tests are carried out to supplement the analysis.

Modeling Issues	Comments
Complexities in dynamic response	Due to large dimensions and often different types and scale of members, the local dynamic response of such model may affect the global dynamic response, specialty when determining primary time period, mass participation and mode extraction. Sometime multiple but independent support excitation may be needed for seismic analysis of long span bridges, with possibly different response spectrum or time history functions
Special modeling needs for handling bearing, joints and connections	 The proper modeling of joints, bearings and connections is very important for the determination of bridge response, especially for lateral; and longitudinal faces. The assumptions of simple, pin, roller or fixed supports are often insufficient. Most of the joints and bearings behave in a highly non linear manner. Only software that has the capability of handling non-linear links and connections can be used effectively.

Modeling Issues	Comments
Special problems involved in the modeling of abutments and foundation	Modeling of abutments can be significantly difficult. Active-passive response, the soil structure interaction combined with the non-linearity of the bearings, anchor blocks, restraining blocks etc. complicate the behavior and hence modeling and analysis.
Complexities in generating finite element models to account for geometric design.	The geometric design requirement such as curved decks, super elevation, vertical curves, skewed supports, merging and diverging bridge decks, very tall piers and towers, variable depth and wide multi-cell box girders, etc make the generation of models a very difficult problem. Special modeling techniques may be needed

Other Issues

- There may be other specialized issues to be considered in some bridges, such as:
 - The temperature effect caused by heat of hydration in hollow thin pier
 - Vibration of bridge due to vehicular high-speed movement as high speed train
 - High water level during construction period
 - Performance of bridge under blast loading

Cable Stayed and Suspension Bridges

• Modeling of Cables and Hangers

- Consider the nonlinearity due to cable profile and material
- Consider the pre-tensioning and multiple stressing cases
- Consider the partial fixity at anchors and local anchor forces
- Consider the dynamic response, flutter, resonance etc
- Local modeling and design of saddles and anchors, including fatigue
- Modeling of Deck
 - The extent of deck model and level of detail. Several models may be needed
 - Composite action, transverse load transfer, tensional stiffness and modeling
 - Axial forces in the entire deck, stiffening and softening

Cable Stayed and Suspension Bridges

• Modeling of Pylons

- Modeling the flexibility and stability
- Partial construction loading and unbalanced conditions
- Interaction of pylons and cables
- Stability, P-Delta, Buckling, Verticality etc.
- Modeling of Expansion Joint systems
 - Accommodating Large movements (as much as 0.5 m or more)
 - Transfer of large forces

Cable Stayed and Suspension Bridges

• Modeling of Foundations

- Very large loads and moments from pylons
- Modeling of water waves, collision etc
- Soil-structure-water interaction
- Anchors and dead-man modeling and design

Computer Aided Solution

Design Step Computer Application Type				
Conceptual Design	Expert Systems, Artificial Analysis Systems, Value Engineering,			
Preliminary Design	Standard Database and Libraries, Expert Systems			
Geometric Design	Alignment and functional design programs			
Modeling and Analysis	Finite Element Analysis			
Component Design RC Design, Steel Design, PSC Design, Spec Design, Girder Design, Slab Design, Pier De				
Detailing	Automated Detailing, Computer Aided Drafting			
Drafting	Computer Aided Drafting			
DocumentationAnalysis and Design Programs, Word ProcessSpread Sheets, Database				

Computer Aided Solution

tarcea / mrr

Design Step	Sample Software
Conceptual Design	ANSYS/Civil FEM Bridges
Preliminary Design	ANSYS/Civil FEM Bridges
Geometric Design	SAP 2000 Bridge Modular, ANSYS/Civil FEM Bridges, Bridgade, LEAP Bridge, QConBridge, SAM, MIDAS-WinBDS, RM2006
Modeling and Analysis	SAP 2000 Bridge Modular, ANSYS/Civil FEM Bridges, Bridgade, LUSAS Bridge, LEAP Bridge, RM2006, SAM, STRAP AutoBridge, ACES, MIDAS-WinBDS
Component Design	SAP 2000 Bridge Modular, ANSYS/Civil FEM Bridges, RM2006, LUSAS Bridge, LEAP Bridge, QConBridge, SAM, STRAP AutoBridge, ACES, MIDAS-WinBDS
Detailing	SAP 2000 Bridge Modular, ANSYS/Civil FEM Bridges, Bridgade, RM2006
Drafting	LEAP-Bridge, MIDAS-WinBDS
Documentation	MSWord. Excel, Access, SAP 2000 Bridge Modular, Bridgade, LEAP Bridge, QConBridge, ACES, MIDAS-WinBDS, RM2006

Geometric Modeling Techniques

Dr. Naveed Anwar

Generating Models

- Graphical Modeling Tools to Draw Elements
- Numerical Generation
- Mathematical Generation
- Copy and Replication
- Subdivision and Meshing
- Mesh Editing
- Geometric Extrusions
- Parametric Generation

Extrusions

- Sweep selected objects through space to create new objects of higher dimension.
- The process of extrusion increases the dimensional space of an existing object by one.
- Line objects are of one dimension that can be generated from a dimensionless point object.
- Two-dimensional area or plate/shell can be generated from a one-dimensional line object.
- This feature is especially suited to creating solid elements form plate/shells, plate/shell elements from beams and beams/columns from point/nodes.

Extrusions

- Convert lower level object to higher level
 - Point to Line
 - Line to Area
 - Curve to Surface
 - Area To Solid
 - Surface to Volume
- Linear
 - Global
 - Along Path
- Radial
 - Global
 - About Axis

Extrude

Extrude P	oints to	Line	5	
Linear	Rad	al	Adva	nced 📔
Proper + F	ty For Add SEC1	ed Ob	jects -	•
- Rotate	About Axi	s /	ΘZ	
Rotate	About Po	int		
Point	X	288		
Point	Y	0.		
Increm	ient Data-			
Angle	e	-15.		
Numl	ber	12		
Total	Rise (Z)	0.		
	ОК		Cance	1

Model circular shaped beam by radial extrusion of point object

Extrude

Convert line to area and area to solid

Extrude Line to Plate Objects

Ext	rude Lin	es to A	reas	
	Linear	Radia	d	Advanced
	Incremen	nt Data—		
	d:	•	0.	
	d	,	144.	
	d:	z	0.	
	Num	ber	6	
	☐ De	lete Sour	ce Ot	pjects
	0	ĸ		Cancel

Input

Extrude

Model circular shaped ramp by radial extrusion of line object

Extrude Area to Solids

Input

Extrude

Model the member with varying cross section by advanced extrusion of area object

56

Other Examples of Extrusions

Other Examples of Extrusions

Automated Meshing

- Object Based model would require that the Object is converted to Elements Automatically
- Automated meshing bridges the gap between Modeling Objects and Finite Elements
- Automated meshing also helps in Automated Load Calculation and Application

Automated Meshing

- Draw or define overall structure geometry in terms of Physical Objects
- The program uses specified rules to convert Objects to valid Finite Element Mesh
- Analysis is carried out using Elements and results presented in terns of Objects
- Meshing does not change the number of objects in the model

Automated Meshing

- Automatic Meshing of Line Objects
 - Where other Line Objects attach to or cross them
 - Locations where Point Objects lie on them.
 - Locations where Area objects cross them
- Automatic Meshing of Area Objects
 - Auto Meshing of area objects is much more complex than Line Objects
 - Area objects are meshed using several criteria and is often software dependent

Single Slab Object

Auto Meshed Slab

Parametric Structures

- Add objects or structures from template files or parametrically defined entities
- Easy to construct models
- Saves Time
- Capable of generating complex structural models

Parametric Cable Stayed Bridge

Spans		Default Pier / Pylon Height	s		Parametric Definition
Left Span, L1	6000 in	Left Piers, H1	1020	in	
Main Span, Lc	12000 in	Pylons, Hc	1404	in	Component Details
Right Span. L2	6000 in	Right Piers, H2	804	in	
					Model View
Deck Parameters		Piers			
Deck Width, W	1200 in	Pier Type	Solid Rectang \sim		
Deck Depth	120 in	Foundation Type	Footing \sim		
Deck Type	Beam Slab \sim	Piers in Left Span	5		
Deck Level, Z0	600 in	Piers in Right Span	5		
Cable Planes and Patt	em	Pylons			
Cable Pattern	Harp \checkmark	Pylon Type	Diamond Frame $ \smallsetminus $		
End Spans	Double Plane \sim	Height Above Deck, Hp	4008	in	
Main Span	Double Plane \sim	Foundation Type	Pile Group 🛛 🗸		OK
		Total Depth	1608	in	UK

Parametric Bridge Models

Wizards

Bridge Information Modeler

Currently Defined Items

Layout Lines

- Material Properties
- Frame Section Properties
- Link Properties
- Deck Sections
- Diaphragms
- Splices
- Restrainers
- Bearings
- Foundation Springs
- Abutments
- ⊕ Bents
- Point Loads
- Line Loads
- Area Loads
- Temperature Gradients
- . Bridge Objects
- Parametric Variations
- Vehicles
- Vehicle Classes
- E- Response Spectrum Functions
- . Time History Functions
- Load Patterns

Step 1: Introduction

The bridge wizard walks you through all of the steps required to create a bridge object model. As shown in the summary table below:

- Step 2 defines the bridge layout line, that is, the horizontal and vertical alignment of the bridge.
- Step 3 defines basic properties and step 4 defines bridge-specific properties.
- Steps 5 through 7 define the bridge object and make all of its associated assignments
- Step 8 creates an object-based model from the bridge object definition.
- Steps 9 through 13 define analysis items and parameters including lanes, vehicles, load cases and desired output items.

Click on any row in the summary table to jump to the associated stop. After you

Step	Item	Description	Note
1		Introduction	
2		Layout Line	Required
3		Basic Properties	
	3.1	Materials	Required
	3.2	Frame Sections	
	3.3	Links	Advanced
4		Bridge Component Properties	
	4.1	Deck Sections	Required
	4.2	Diaphragms	
	4.3	Splices	
	4.4	Restrainers	
	4.5	Bearings	Required

> >

Form Layout

<

Step

>

Close Wizard

Modeling of Connections and Behavior

Basic Modelling Techniques-Behaviour

- Constraints
- Restraints
- Springs
- Nonlinear Links
- Nonlinear Hinges
- Element End Conditions
- Dummy elements

Restrained Degrees of Freedom

- If the displacement of a joint along any one of its available degrees of freedom is known, such as at a support point, that degree of freedom is restrained.
- The known value of the displacement may be zero or non-zero, and may be different in different Load Cases.
- The restraint reaction is determined by the analysis.
- Unavailable degrees of freedom are essentially restrained.

Constraints

- A constraint consists of a set of two or more constrained joints.
- The displacements of each pair of joints in the constraint are related by constraint equations.
- The types of behavior that can be enforced by constraints are:
 - Rigid-body behavior
 - Rigid Body: fully rigid for all displacements
 - Rigid Diaphragm: rigid for membrane behavior in a plane
 - Rigid Plate: rigid for plate bending in a plane
 - Rigid Rod: rigid for extension along an axis
 - Rigid Beam: rigid for beam bending on an axis
 - Equal-displacement behavior
 - Symmetry and anti-symmetry conditions

Constraints – Direct Links

- A constraint consists of a set of two or more constrained joints whose displacement is linked
- Rigid-body behavior
 - Rigid Body: fully rigid for all displacements
 - Rigid Diaphragm: rigid for membrane behavior
 - Rigid Plate: rigid for plate bending in a plane
 - Rigid Rod: rigid for extension along an axis
 - Rigid Beam: rigid for beam bending on an axis
- Equal-displacement behavior
- Symmetry and anti-symmetry conditions

Special Edge Constraints

1 Joint Link Element

2 Joint Link Element

- Linear
- Multilinear Elastic
- Multilinear Plastic
- Damper
- Gap
- Hook
- Plastic (Wen)
- Rubber Isolator
- Friction Isolator
- T/C Friction Isolator
- Frequency-Dependent Link/Support Properties

Linear Link Element

Linear stiffness and damping in every degree of freedom

Link/Support Name Upper Stiffness Matrix (Symmetrical) Used For All Analysis Cases					
LIN2	C Stiffness Is Uncoupled	Stiffness Is Coupled			
,	U1 U2	U3 R1	R2	R3	
Directional Control	U1 0. 0.	0. 0.	0.	JO.	
Direction Fixed	U2 0.	0.	0.	0.	
V1 🔽	U3	0. 0.	0.	0.	
🔽 U2 🕅	R1	0.	0.	0.	
V3	R2		0.	0.	
⊮ B1 □	R3			0.	
🔽 R2 🕅	Upper Damping Matrix (Symmetrical) Us	ed For All Analysis Cases			
E B3 E	C Damping Is Uncoupled C Damping Is Coupled		Coupled		
	U1 U2	U3 R1	R2	R3	
- Shear Distance from End J			0	0	
U2 0.			0.		
U3 0.	03	0.	JU.	JU.	
	R1	0.	0.	JO.	
	R2		0.	0.	
Ton, m, C 💌	R3			0.	
	OK	Cancel			

Multilinear Elastic Element)Multilinear Plastic Element

dit	Toperties	
Identification Property Name Direction Type NonLinear	LIN2 [U1 [MultiLinear Plastic]Yes	Hysteresis Type And Parameters Hysteresis Type Kinematic No Parameters Are Required For This Hysteresis Type
Properties Used For Linear An Effective Stiffness Effective Damping Multi-Linear Force-Deformation Displ Force 1 -101. 2 -11. 3 0. 0. 4 1. 1. 5 10. 1. Order Rows Delete for	alysis Cases 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hysteresis Definition Sketch Multilinear Plastic - Kinematic

Gap and Hook Connections

- Gap and Hook Elements are used to model contact type problems
- Gaps are compression only elements while Hooks are Tension only elements

• Friction Isolator

- Biaxial friction-pendulum isolator that has coupled friction
- properties for the two shear deformation, post-slip stiffness
- in the shear direction due to the pendulum radii of the
- slipping surfaces, gap behavior in the axial direction, and
- linear effective-stiffness properties for the three moment deformations

Joint Pattern

- A joint pattern is simply a set of scalar values defined at the joints for assigning more complex distributions of temperature and pressure over the structure.
- Joint patterns by themselves create no loads on the structure.
- For example, joint patterns are used to define triangular load for water pressure at water tank wall

Joint Pattern

End Releases

- Easily model non-fixed connections by general "End-Release"
 - Axial
 - Shear
 - Torsion
 - Moment

Assign Frame Releases

Tanie Heidases	Release		Frame Partial Fixity Springs	
Axial Load	Start	End	Start	End
Shear Force 2 (Major)	Г	Г		
Shear Force 3 (Minor)	Г	Г		
Torsion	Г	Γ		
Moment 22 (Minor)	Г	Г		
Moment 33 (Major)	Γ	▼ []		0.
☐ No Releases			OK	Cancel

Rigid End Offsets

- Rigid End connections to model large joints
- Automated end offset evaluation and assignment

Modeling Building Impact

86

Plastic Hinges

❑ Hinge properties are used to define nonlinear force-displacement or moment-rotation behavior that can be assigned to discrete locations along the length of frame (line) elements

				-		
Edit						
	Point	Moment/SE	Botation/S	SE		
	E-	-0.2	-8			
	D-	-0.2	-6			
	C-	-1.25	-6			
	B-	-1	0			
	A	0	0			
	В	1.25	<u> </u>			
	 D	n.25	6			
	E	0.2	8.	Hinge is Rigid Plastic		
	Scaling for Moment and Rotation					
	PositiveNegative					
	🔽 Use	Yield Moment Mo	ment SF			
	🔽 Use	Yield Rotation Rol	tation SF			
	Acceptance Criteria (Plastic Rotation/SF) Positive Negative					
	Immediate Occupancy					
	Life Safety					
	Collapse Prevention 6.					
	Show Acceptance Criteria on Plot					
	Туре					
	Mon	nent - Rotation				
	C Moment - Curvature					
	Hinge Length			OK		
	,	rision o congui		Lancei		

amo Hingo Droporty Data for EH1

Pushover Modeling (Properties)

Pushover Modeling (Beam Element)

Three Dimensional Beam Element

Pushover Modeling (Column Element)

Three Dimensional Column Bement

Base Isolation

- Base Isolators are important to restrict the ground motion transfer to structure during earthquake
- □ General Isolators can be used to separate vibrating loads or parts of structure from rest of structure

Mechanical Damper

Modeling of Loads

Bride Load Classification

- Externally Applied , Internally Applied
- Primary, Secondary, Extraordinary
- Static, Dynamic
- Permanent, Transient
- Deterministic, Non-Deterministic
- Environmental, Man-made
- Short term, Long Term

Loads on Bridge Deck

- Gravity Loads
- Traffic and Highway Loads
- Pre-stressing Loads
- Temperature Loads
- Shrinkage and Creep
- Wind Load
- Seismic Load

Modeling Loads

- For Level-1 FE models where elemenst are defined directly, the loads may be applied or defined for the elements
- For Level-3, Object based FE models, loads may be defined independently of the Finite elements using geometric representation
- Most loads can be computed/ applied from geometry and mass distribution automatically

Geometric Modeling of Loads

- Point Load
- Line Load
- Area Load
- Volume Load

Gravity Loads

- These are the vertical loads due to the gravity. It consists of the dead weight of the structures. These loads can be applied as the element loads or as nodal loads.
 - For Beam Model applied as UDL over the length
 - For Shell Model applied as UDL over the area
 - Special loads applied as Point Loads
 - Applied as Lumped Mass

Traffic and Highway Loads

- Moving load handled as a special problem
 - Vehicles
 - Vehicle Classes
 - Traffic Lanes
 - Additional Point Loads

The Truck Load

Temperature Loads

- Both local temperature variation across section and global changes may need to be considered
- In case of Beam model
 - The temperature loads to any member can be applied as a form of fixed end moment caused by the temperature changes.
- For the cases of Thin-wall and Plate model
 - The temperature loads can be applied as the initial strains caused by the temperature changes to each element.

Shrinkage and Creep

- The effect of Shrinkage and Creep of concrete can also be applied as the load by converting the expected creep and shrinkage strain in to an equivalent temperature strain.
- Many programs now handle creep, shrinkage and relaxation etc. directly and internally convert them to loads

Shrinkage and Creep

Determine strains due to shrinkage and creep separately

- □ Using the coefficient of thermal expansion for the material and the determined strain calculate the equivalent temperature change
- □ Apply this temperature to the model

Creep / *Shrinkage*(*strain*) = α . ΔT

Animations

Dr. Naveed Anwar

Analysis and Results

The purpose of modeling and analysis is to try to get the "correct response", not necessarily the "accurate one"
- Static
 - Linear Static
 - Nonlinear Static (Included Push Over)
 - Staged Construction
- Multi-Step Static (SAP2000 only)
- Response Spectrum
- Time History
 - Linear Time History
 - Nonlinear Time History
- Moving Load (SAP2000 only)
- Buckling (SAP2000 only)
- Steady State (SAP2000 only)
- Power Spectral Density (SAP2000 only)

- Static
 - Linear: The most common type of analysis. Loads are applied without dynamical effects.
 - Nonlinear: Loads are applied without dynamical effects. May be used for cable analysis, pushover analysis, and other types of nonlinear problems. (Pushover + P-Delta)
 - Nonlinear Staged Construction: The definition of a nonlinear directintegration time-history analysis case for staged construction.

- Multi-Step Static (SAP2000 only)
- Linear static analysis for multi-stepped load cases, such as moving loads and wave loads. A separate output step is produced for each step of the given loads

• Modal

Calculation of dynamic modes of the structure using the Eigenvector or Ritz-vector method. Loads are not actually applied, although they can be used to generate Ritz vectors.

• Response Spectrum

•

Statistical calculation of the response caused by acceleration loads. Requires responsespectrum functions.

Response Spectrum Function

- Time History
 - Time History. Time-varying loads are applied. Requires time-history functions. The solution may be by modal superposition or direct integration methods.
 - Linear Modal
 - Linear Direct Integration
 - Nonlinear Time History. Time-varying loads are applied. Requires timehistory functions. The solution may be by modal superposition or direct integration methods.
 - Nonlinear Modal
 - Nonlinear Direct Integration

- Moving Load
 - Calculation of the most severe response resulting from vehicle live loads moving along lanes on the structure. Uses defined vehicle loads and defined lanes rather than the load cases that are used by other analysis types.

Vehicle Load

- Buckling
 - Calculation of buckling modes under the application of loads.
- Steady State
- A steady-state analysis case solves for the response of the structure due to cyclic (harmonic, sinusoidal) loading at one or more frequencies of interest.

Analysis Case – Construction Sequence

Segmental Bridge Span Assembly

pan A	Assembly Data						
	Span Discretization	n.	Start Station	Sp Disc Length	End Station	Type	Add New
1	StartA	~	0	240	240	Г	Ава Сору
2	BalCant1	~	240	1920	2160	T	Insert Copy
3	EndA	\sim	2160	240	2400		Delete
▶4	StartA	~	2400	240	2640	Г	
							+ Span Discretizati View/Rename Segment

Staged Construction Analysis

Main Stage 1: Super Structure

Step 1: Add Pylon Step 2: Add Deck01 Step 3: Add Deck02 Step 4: Add Deck03 Step 5: Add Deck04 Step 6: Add Deck05 Step 7: Add Deck06 Step 8: Add Deck07 Step 9: Add Deck08 Step 10: Add Deck09 Step 11: Add Deck10

Staged Construction Analysis

- Main Stage 2: Post Build
- Step 1: Time01 at 3 days
- Step 2: Time02 at 3 days
- Step 3: Time03 at 10 days
- Step 4: Time04 at 30 days
- Step 5: Time05 at 100 days
- Step 6: Time06 at 300 days
- Step 7: Time07 at 1,000 days
- Step 8: Time08 at 3,000 days

Pushover Analysis

Hinge Property Data **Force Controlled**

Frame Hinge Property Data for FH2	- Shear V2	
Force Control Parameters Maximum Allowed Force		
Specified Proportion of Yield Force	Positive	Negative
C User Specified Force	Positive	Negative
Hinge Loses All Load Carrying Capacity) y When Maximum Fo	rce Is Reached
Acceptance Criteria (Force/Maximum Allo	wed Force) Positive	Negative
Immediate Occupancy	0.5	
Life Safety	0.8	
Collapse Prevention	1.	
✓ Hinge is Symmetric (Tension Behavior S	Same as Compression	n Behavior)
[ŬK]	Cancel	
Solutions		

120

Response Curve

- Create from Time History Case at Particular Joint
- Frequency or Period
- Versus
 - Spectral Displacement
 - Spectral Velocity
 - Pseudo Spectral Velocity
 - Spectral Acceleration
 - Pseudo Spectral Acceleration

Show Plot Function

- For Multi-stepped Case
- Such as Time History Case
- Load Function
- Energy Function
- Input, Kinetic, Potential Modal Damping
- Link Damper, Link Hysteretic or Energy Error
- Base Function
- Joint Displacement/Forces
- Frame Forces

Show Plot Function

Load Function

Section Cuts

- To obtain resultant forces acting at section cuts through a model.
- Defined before or after an analysis has been run.
- First select the objects that are to be part of the section cut and assign to group.
 - Section cut defined by group
 - Section cut defined by quadrilateral cutting planes

Section Cuts

Select Point 39, 40 and Area 5.

Group Definition	
Group Name	2NDWALL
- Group Uses	
Selection	✓ StaticNL Structure Stage
Section Cut Definition	Bridge Response Output
🔽 Steel Frame Design Group	Auto Seismic Force Output
🔽 Concrete Frame Design Group	F Auto Wind Force Output
🔽 Aluminum Design Group	
Cold Formed Design Group	Mass and Weight Output
Check/U	Incheck All
	Display Color
ОК	Cancel

CSI Bridge

- Basic Bridge related functions
 - Moving Loads: Lanes, Vehicles..
 - Sequential Construction
- Special CALTRANS bridge modeler
 - Step-by-step Modeler
- The full Object Based Bridge Modeler
 - Step-by-step Modeler
 - General Parametric Modeler

CSI Bridge - Object Based Bridge Modeler

- Useful for staring any bridge model
- Applicable to most typical and Category-1 bridge projects
- Especially useful for preliminary and comparative studies of various options

Horizontal Layout – Quick Options

Horizontal Layout Line Data - Quick	s Start					
Select a Quick Start Option						
 Straight 		C Curve Right - Straight				
C Straight - Bend Right	• • ••••••••••••••••••••••••••••••••••	C Curve Left - Straight				
C Straight - Bend Left	••	C Straight - Curve Right - Straight				
Straight - Bend Right - Bend Right	• • • • • • • • • • • • • • • • • • •	C Straight - Curve Left - Straight				
Straight - Bend Left - Bend Left	• • • • • • • • •	 Straight - Curve Right - Straight - Curve Right - Straight 				
C Curve Right		 Straight - Curve Left - Straight - Curve Left - Straight 				
C Curve Left	,	 Straight - Curve Right - Straight - Curve Left - Straight 				
Straight - Curve Right	,	 Straight - Curve Left - Straight - Curve Right - Straight 				
C Straight - Curve Left						
	[Cancel				
AIT Solutions						

Vertical Layout – Quick Options

Vertical Layout Line Data - Quick St	art		
Select a Quick Start Option			
C Straight	••	C Parabola Down - Straight	
C Straight - Bend Down	· · · · · · · · · · · · · · · · · · ·	Parabola Up - Straight	
Straight - Bend Up	• • • • •	📀 Straight - Parabola Down - Straight	
Straight - Bend Down - Bend Down		C Straight - Parabola Up - Straight	
C Straight - Bend Up - Bend Up			
🔿 Parabola Down			
🔿 Parabola Up	• • • • •		
Straight - Parabola Down			
C Straight - Parabola Up	• • • •		
	OK	Cancel	

Parametric Deck Sections

	🔀 Select Bridge Deck Section Type
Layout Lines Deck Sections BSEC1 Abutments Column Supports	Ext. Girders Vertical Ext. Girders Sloped Ext. Girders Clipped Ext. Girders with Radius Ext. Girders Sloped Max
Bents Diaphragms Hinges Parametric Variations Bridge Objects Wahialas	AASHTO - PCI - ASBI Standard
u — Venicles u — Vehicle Classes u — Load Cases u — Analysis Cases	Other Concrete Sections
	Tee Beam Flat Slab
	Steel and Concrete Sections
Anwar	Steel Girders

Parametric Deck Section

Bridge Objects

		D II			Coordinate	e Sys	tem	
Bridge Ub	pject Name BU	IBJ I			GLUBAL	-		Kip, It, F
) efine Bridge Object R	eference Line							
Span	Bridge Object		Layout Line		Station		Item	
Label	Span Type		Name		ft		Label	
SpanStart		🔻 BL	L1	-		0.	StartAbt	_
SpanStart	Start Abutment		BLL1		0.		StartAbt	Inser
SpanToEnd	Span to Abutment		BLL1		100.		EndAbt	Incer
								↓ Del
Notes: 1. Bridge ob Bridge Object Plan Viev	iject location is based on bridg v (X-Y Projection) (Double C	ge section ir lick Sketch	sertion point follow	ing specifie	ed layout line.	Sho	w Bridge Object Ass	
Notes: 1. Bridge ob Bridge Object Plan View	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Click Sketch La	isertion point follow For Enlarged View yout Line	ing specifie)	ed layout line.	Sho	w Bridge Object Ass Modify/Shi	signments
Notes: 1. Bridge ob Bridge Object Plan Viev	iject location is based on bridg v (X-Y Projection) (Double C	ge section ir lick Sketch La St	sertion point follow For Enlarged View yout Line	ing specifia)	ed layout line.	Sho	w Bridge Object Ass Modify/Shi Modify/Show User F	signments ow Spans
Notes: 1. Bridge ob Bridge Object Plan View	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Nick Sketch La St Be	sertion point follow For Enlarged View yout Line ation	ing specifia)	ed layout line.	Sho	w Bridge Object Ass Modify/Sh Modify/Show User D Modify/Show	signments ow Spans Discretization P
Notes: 1. Bridge ob Bridge Object Plan View	ject location is based on bridg ν (X-Y Projection) (Double C	ge section in Lick Sketch La St Be Ra	sertion point follow For Enlarged View yout Line ation ating adius	ing specifia)	ed layout line.	Sho	w Bridge Object Ass Modify/Sho Modify/Show User E Modify/Show	signments ow Spans Discretization P v Abutments
Notes: 1. Bridge ob Bridge Object Plan View North	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Lick Sketch La St Ba Ra Gr	Sertion point follow For Enlarged View yout Line ation ation ating adius ade	ing specifie)	ed layout line.	Sho	w Bridge Object Ass Modify/Sh Modify/Show User D Modify/Show Modify/Sh	signments ow Spans Discretization P v Abutments ow Bents
Notes: 1. Bridge ob Bridge Object Plan View North	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Lick Sketch La St Ba Ba Gr X	Isertion point follow For Enlarged View yout Line ation ation ation atius adius ade	ing specifia)	ed layout line.	Sho	w Bridge Object Ass Modify/Sh Modify/Show User D Modify/Show Modify/Show Modify/Show Hin	signments ow Spans Discretization P v Abutments iow Bents iges (Exp. Joint
Notes: 1. Bridge ob Bridge Object Plan View North	ject location is based on bridg ν (X-Y Projection) (Double C	ge section in Lick Sketch La St Be Ra Gr X Y	sertion point follow For Enlarged View yout Line ation ation ation atios ade	ing specifia)	ed layout line.	Sho	w Bridge Object Ass Modify/Show User E Modify/Show Modify/Show Modify/Show Hin Modify/Show Cro	signments ow Spans Discretization P v Abutments ow Bents nges (Exp. Joint oss Diaphragm
Notes: 1. Bridge ob Bridge Object Plan View North	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Lick Sketch La St Be Ra Gr X Y Z	sertion point follow For Enlarged View yout Line ation ating adius ade	ing specific	ed layout line.	Sho	w Bridge Object Ass Modify/Show Modify/Show User E Modify/Show Modify/Show Hin Modify/Show Cro Modify/Show S	signments ow Spans Discretization P v Abutments iow Bents iges (Exp. Joint oss Diaphragm: SuperElevation.
Notes: 1. Bridge ob Bridge Object Plan View North	iject location is based on bridg v (X-Y Projection) (Double C	ge section in Lick Sketch Ea St Ba Ba Gr X Y Z	Isertion point follow For Enlarged View yout Line ation ation atius ade ade	ing specifia	ed layout line.	Sho	w Bridge Object Ass Modify/Show User D Modify/Show User D Modify/Show Modify/Show Hin Modify/Show Cro Modify/Show S Modify/Show S	signments ow Spans Discretization P v Abutments ow Bents nges (Exp. Joint oss Diaphragm SuperElevation. ridge Prestress
Notes: 1. Bridge ob Sridge Object Plan View North	ject location is based on bridg v (X-Y Projection) (Double C	ge section in Lick Sketch La St Be Ra Gr X Y Z	Sinap To	ing specifie	ed layout line.	Sho	w Bridge Object Ass Modify/Show User D Modify/Show User D Modify/Show Modify/Show Hin Modify/Show Cro Modify/Show S Modify/Show B	signments ow Spans Discretization P v Abutments now Bents nges (Exp. Joint oss Diaphragms SuperElevation. ridge Prestress

- Layout Lines
- Deck Sections
- Abutments
- Column Supports
- Bents
- 🗄 🗝 Diaphragms
- 🗄 ---- Hinges
- Parametric Variations
- Bridge Objects
- ± Lanes
- Vehicles
- Vehicle Classes
- 🗄 ---- Load Cases
- 🗄 Analysis Cases

Pre-stressing Tendons – Quick Options

📕 Tendon Quick Start		
Select A Quick Start Option	Single Span Multiple Span	Span Definition For Quick Start Spans Start and End at Abutments and Bents Only
Straight Tendon 1	·•	Spans Are as Defined for Bridge Object
C Straight Tendon 2	 ← → + − → →	
C Straight Tendon With Bends 1		
C Straight Tendon With Bends 2		
C Straight Tendon With Bends 3		
C Straight Tendon With Bends 4		
C Parabolic Tendon 1		
C Parabolic Tendon 2		
C Parabolic Tendon 3		
C Parabolic Tendon 4		OK
C Parabolic Tendon 5		Cancel

Pre-stressing Tendons - Parabolic

Define Parabolic Tendon Vertical Layout By Points						
dit						
Tendon Name	Numbe Numbe	r of Control Points er of Points 3		Template		
Tendon Layout Data						
Point Tendon Dist	Offset Type	Vert Offset	Slope Type	Slope		
ft		ft		ft / ft		
1 0.	Specified	-0.5906	Prog Calc	-0.189		
2 50.	Specified	-5.315	Specified	0.		
3 100.	Specified	-0.5906	Prog Calc	0.189		
2. Offset is offset	of the tendon from br SpanToEnd	i the bridge object reference	erence line. Units Tend [Offset	Kip, ft, F 💌 Dist		
			Slope			
			S S	53.647		
Z 4.6546 C No Snap C Snap to Ref Line C Snap to Tendon ✓ Snap to Tendon						
Clear Calculate	d Results	Be	efresh Calculated Re	esults		
Use Calculated R	esults for This Tendor	n	Done			

Traffic Loads – Lanes and Vehicles

- ∃ Layout Lines
- Deck Sections
- Abutments
- Column Supports
- 🗄 🗝 Bents
- 主 \cdots Diaphragms
- 🕂 🗝 Hinges
- Parametric Variations
- 🗄 🗝 Bridge Objects
- 🖻 🗝 Lanes
 - LANE1
- Vehicles
- 🗄 🗝 Vehicle Classes
- 🗄 ---- Load Cases
- 🗄 Analysis Cases

Vehicle Data – Standard and General

St	andard Vehicle Data	
	Vehicle Name AML-1	
	Data Definition	
	Vehicle Type AML 💌	
	Scale Factor	
	Dynamic Allowance	
	Conversion	
	Show As General Vehicle	
	Convert To General Vehicle	
	<u> </u>	

General Vehicle Data									
Vehicle Na	me	GEN1				Use BD 37/	'01 (2002) for I	Uniform Load Length El	ffects
Usage	Usage					Vehicle Applies To Straddle (Adjacent) Lanes Only			y
✓ Lane Negative Moments at Supports					Straddle Reduction Factor				
Interior Vertical Sup	port Forces								
All other Responses	S								
Floating Axle Loads									
	Value	Wid	Ith Type	Axle Width	Load	l Plan			
For Lane Moments	0.	One Poir	nt 💌						
For Other Responses	0.	One Poir	nt 💌						
🔲 Double the Lane M	foment Load v	when Calculatir	ng Negative S	pan Moments					
					Load	Elevation			
Load	Minimum	Maximum	Uniform	Uniform		Uniform	Axle	Axle	Axle
Length Type	Distance	Distance	Load	Width Type		Width	Load	Width Type	Width
Fixed Length 💌	1.		0.	Zero Width	┛		0.	One Point 💌	
					L. 17	1 🗆			
		Add	<u> </u>	Insert	Modify		Jelete		
			······	c12					
			<u> </u>	<u></u>	Cano	el		Units	Kip, It, F 💌

PULAU MUARA BESAR BRIDGE

Bridge Locations

Project Scope

	West Approach Road	The west approach road on the Mainland consists of all earthworks and roadworks
	West Approach Bridge Section	A prestressed concrete box girder bridge with a span length of 60m.
	Main Bridge Section	A prestressed concrete box girder bridge with a minimum soffit clearance of 28m and a main span length of 120m
	East Approach Bridge Section	A prestressed concrete box girder bridge with a span length of 60m.
	East Approach Road	The east approach road on PMB consists of all earthworks and roadworks
AIT Solution	Anwar	AIT Solutions

P

Main Bridge Span Configurations

The Main Bridge has a total length 400 m and has a span configuration of 80m+120m+120m+80m in continuous rigid frame structure

Main Bridge Superstructure Arrangement

Typical Cross Section of Main Bridge Deck at Mid Span

Main Bridge Pier Arrangement

The intermediate piers are numbered as MP2 to MP4 and the movement joint piers are numbered as MP1 and MP5

Main Bridge MP2 to MP4 Pier Dimensions

TELISAI HIGHWAY PROJECT

General Information

- British Code BS 5400 or relevant version are followed for this project.
- **Concrete** Strength:

(MPa)

Member	Nominal Strength (MPa)
Blinding concrete	10
Mass concrete	15
RC where live load stresses are low	20
General rc, insitu bored piles, rc pavement	40
Concrete bridge decks, columns, footing & approach structure	40
Insitu prestressed concrete	60
Precast prestressed concrete	60

 \Box Minimum yield strength of reinforcement (f_y) to be used shall be 460

Design of Pile and Pile Cap

Pile and pile cap are designed using Finite Element Analysis.

FEM for Pile Design

FEM for Pile Cap Design

Pile Capacity

Capacity of section versus extreme load in pile

Bridge Approach Slab Design

Deformed FEM Mesh

Bridge Slab Design

AIT!

Total Displacement Extreme Value = $23.53 \times 10^{-3} \text{ m}$

200 300 4.00 5.00 6.00 7.00 8.00

Bending Moment Extreme Value = 22.59 kN/mm³

2.00 3.00 4.00 5.00 6.00 7.00 8.00

Shear Force Extreme Value = -23.93 kN

148

Main Bridge Pier Arrangement

The intermediate piers are numbered as MP2 to MP4 and the movement joint piers are numbered as MP1 and MP5

Main Bridge MP1 & MP5 Pier Dimensions

Main Bridge Pile Cap & Piling Arrangement

Pier MP2 & MP4 Foundation

Main Bridge Pile Cap & Piling Arrangement

Pier MP1 & MP5 Foundation

Questions and discussion!

